module Summary:sig..end
The algorithm runs in O(1) space and O(n) time.
It is preferred for computing standard deviation, because roundoff errors in floating point operations might lead to taking a square root of a negative value.
type t 
val empty : tval add : t -> float -> tval max : t -> floatnan if the data set is empty.val min : t -> floatnan is the data set is empty.val size : t -> intval mean : t -> floatnan if the data set is empty.val variance : t -> floatnan if the
      data set is empty.val sd : t -> floatnan if the data set is empty.val skewness : t -> floatnan if
      the data set is empty.
      Note: for small sample sizes estimated value might be inaccurate,
      See issue #20.
val kurtosis : t -> floatnan if the data set is empty.
      Note: for small sample sizes estimated value might be inaccurate,
      See issue #20.
module Monoid:Algebra.Monoid.Swith type t := t