module Sample:sig..end
val min : float array -> floatval max : float array -> floatval minmax : float array -> float * floatval range : float array -> floatval moments : int -> float array -> float arrayE{X^1}, E{X^2}, ..., E{X^k}.val mean : float array -> floatval variance : ?mean:float -> float array -> floatn - 1.val sd : ?mean:float -> float array -> floatval skewness : ?mean:float -> ?sd:float -> float array -> floatval kurtosis : ?mean:float -> ?sd:float -> float array -> floatval rank : ?ties_strategy:[ `Average | `Max | `Min ] ->
?cmp:('a -> 'a -> int) -> 'a array -> float * float arrayties_strategy controls
which ranks are assigned to equal values:
`Average the average of ranks should be assigned to each value.
Default.`Min the minimum of ranks is assigned to each value.`Max the maximum of ranks is assigned to each value.References
val histogram : ?n_bins:int ->
?range:float * float ->
?weights:float array ->
?density:bool -> float array -> float array * float arrayrange, whic defaults to
(min - k, max + k), where k = (min - max) / (bins - 1) * 2.
This behaviour is copied from the excellent
statistics library by
Brian O'Sullivan.module Quantile:sig..end
val quantile : ps:float array -> float array -> float arrayp, using the continuous sample method with default
parameters.val iqr : float array -> floatmodule KDE:sig..end
module Correlation:sig..end
module Summary:sig..end