module KDE: sig .. end
type bandwidth = 
Bandwidth selection rules.
type kernel = 
val estimate_pdf : ?kernel:kernel ->
       ?bandwidth:bandwidth ->
       ?n_points:int -> float array -> float array * float array
O(n * points) Simple kernel density estimator. Returns an array
      of uniformly spaced points from the sample range at which the
      density function was estimated, and the estimates at these points.
Example
      
        open Pareto
        let open Distributions.Normal in
        let vs = sample ~size:100 standard in
        let (points, pdf) = Sample.KDE.estimate_pdf ~points:10 vs in begin
          (* Output an ASCII density plot. *)
          Array.iteri (fun i d ->
              let count = int_of_float (d *. 20.) in
              printf "%9.5f " points.(i);
              for i = 0 to count do
                print_char (if i = count then '.' else ' ');
              done;
              print_newline ();
            ) pdf
        end
      
      
References
- B.W. Silverman, "Density Estimation for Statistics and Data
        Analysis", Vol. 26, Monographs on Statistics and Applied
        Probability, Chapman and Hall, London, 1986.